# Configuração do PWM da placa Arduino UNO.

Por Eng. Roberto Bairros dos Santos

www.bairrospd.com

Data: 07/07/2017

# Sumário

| Prefácio                                                        | 3  |
|-----------------------------------------------------------------|----|
| Relação entre os temporizadores e os pinos do Arduino UNO       | 4  |
| Configuração normal do Timer O para a placa Arduino UNO         | 6  |
| Configuração normal do Timer 1 para a placa Arduino UNO         | 7  |
| Configuração normal do Timer 2 para a placa Arduino UNO         | 8  |
| Como medir a frequência dos temporizadores na placa Arduino UNO | 9  |
| Resumo dos temporizadores da placa Arduino UNO                  | 13 |
| Conclusão                                                       | 14 |
| Referências                                                     | 15 |

#### Prefácio.

A função analogWrite() usa os temporizadores do microcontrolador ATmega328P, neste tutorial você vai ver como estes temporizadores são configurados para uso normal, sem alterar a frequência original da Arduino.

O detalhe da configuração pode ser visto no tutorial 01 Detalhando o PWM do Arduino.

Relação entre os temporizadores e os pinos do Arduino UNO.

Para aplicar estes conhecimentos você deve saber a relação entre os pinos da placa Arduino e o Temporizador, para isto você deve olhar o diagrama e identificar as conexões entre os pinos do microcontrolador e os pinos de saída da placa Arduino UNO. Os pinos na placa Arduino que suportam PWM são marcados com o sinal "~"!

GND +50 GND C4 100n LØ×1F -H8.5 AD5 SCL AD4/ A9 SDA GND ARE  $3 \times 2$ Μ 8 GND SCK MISO 6 13 12 11 10 9 ZU4 MOS (SCK)PB5 (MISO)PB4 (MOSI)PB3 RESET 18 GND ā (SS)PB2 (OC1)PB1 XTAL2 IOH 6×1F-Н8.5 XTAL1 IN8 (ICP)PB0 CSTCE16M0V53 RØ 16MHZ AREF AD5 (ADC5)PC5 (ADC4)PC4 (ADC3)PC3 AREF AD4/SDA AVCC AGND AD3 AD2 +50 26 (ADC2)PC2 (ADC1)PC1 VCC GND 24 AD1 ADØ ADC0)PC0) C6 100 n ΑD 8×1Γ<u>−</u>Η8.5 107 (AIN1)PD7 (AIN0)PD6 (T1)PD5 106 105 8 GND 103 (T0)PD4 (INT1)PD3 103 I02 (INTO)PD2 102 101 100 TXDPD1 (RXD)PD0 ATMEGA328P-PU 1K RN4B M8RXD <del>\_0</del>4 16 RN4A MATXD

A tabela abaixo mostra a relação entre os pinos do microcontrolador o temporizador que controla aquele pino e o pino da placa Arduino UNO. A frequência que aparece na descrição é referente a frequência normal de operação!

| Pino Arduino | Pino MEGA386P | Descrição                 |
|--------------|---------------|---------------------------|
| 3            | PD3           | (PCINT19/OC2B/INT1) 490Hz |
| 5            | PD5           | (PCINT21/OC0B/T1) 980Hz   |
| 6            | PD6           | (PCINT22/OC0A/AIN0) 980Hz |
| 9            | PB1           | (OC1A/PCINT1) 490Hz       |
| 10           | PB2           | (SS/OC1B/PCINT2) 490Hz    |
| 11           | PB3           | (MOSI/OC2A/PCINT3) 490Hz  |

A figura abaixo mostra esta ligação.

## Configuração do PWM da placa Arduino UNO

A figura abaixo mostra a relação entre os temporizadores e seus registradores e o pino da saída Arduino.

Numa aplicação primeiro você escolhe o pino ou pinos onde será usado o PWM, depois você usa a figura para escolher o temporizador e saber quais os registradores estão associados ao pino escolhido!

A frequência mostrada a direita é a frequência normalmente usada na instrução analogWrite()!

Os pinos 5 e 6 trabalham com uma frequência de PWM mais alta dos que os outros pinos.

Note que cada temporizador controla dois pinos do Arduino!

Outro detalhe importante que o valor de contagem máxima (TOP) é de 255!



#### Configuração normal do Timer O para a placa Arduino UNO.

A figura mostra o valor dos registradores do TIMER 0 lembrando que o registrador que define o ciclo de trabalho (duty cycle) é o registrador TCCR0A que comando o pino de saída 06 e TCCR0B que comanda o pino de saída 05!

Este temporizador opera no modo "Fast PWM" a uma frequência de 976Hz com período de 1,024ms!

Este são os dois pinos que operam com a frequência mais alta de PWM quando a placa UNO é usada sem alteração nos temporizadores!



| Mode | WGM02 | WGM01 | WGM00 | Timer/Counter<br>Mode of<br>Operation | тор  | Update of<br>OCRx at | TOV Flag<br>Set on <sup>(1)(2)</sup> |
|------|-------|-------|-------|---------------------------------------|------|----------------------|--------------------------------------|
| 3    | 0     | 1     | 1     | Fast PWM                              | 0xFF | BOTTOM               | MAX                                  |

Table 15-9. Clock Select Bit Description

| CS02   | CS01                   | CS00 | Descriptio               | Description                            |            |       |  |  |
|--------|------------------------|------|--------------------------|----------------------------------------|------------|-------|--|--|
| 0      | 1                      | 1    | clk <sub>VO</sub> /64 (F | clk <sub>VO</sub> /64 (From prescaler) |            |       |  |  |
| former | $m = \frac{f_{cB}}{M}$ | 050  | N=64                     | N                                      | focnxpcpwm | t(ms) |  |  |

#### Configuração normal do Timer 1 para a placa Arduino UNO.

A figura mostra o valor dos registradores lembrando que o registrador que define o ciclo de trabalho (duty cycle) é o registrador ODRCOA que comando o pino de saída 09 e OCROB que comanda o pino de saída 10!

Este temporizador opera no modo "PWM, Phase Correct, 8-bit" a uma frequência de 490Hz com período de 2,040ms!

| TCCR1A(I | nicial)=161=0b101000001                                                  | COM1A1 | COM1A0 | COM1B1 | COM1B0 | -     | -     | WGM11 | WGM10 |
|----------|--------------------------------------------------------------------------|--------|--------|--------|--------|-------|-------|-------|-------|
|          | _                                                                        | 1      | 0      | 1      | 0      | 0     | 0     | 0     | 1     |
|          | Clear OC0B on Compare Match, set OC0B at BOTTOM,<br>(non-Inverting mode) | 1      | 0      | 1      | 0      |       |       |       |       |
|          |                                                                          | 7      | 6      | 5      | 4      | 3     | 2     | 1     | 0     |
| TCCR1B   | (Inicial)=3 =0b00000011                                                  | ICNC1  | ICES1  | -      | WGM13  | WGM12 | C\$12 | C\$11 | CS10  |
|          |                                                                          | 0      | 0      | 0      | 0      | 0     | 0     | 1     | 1     |

Table 16-4. Waveform Generation Mode Bit Description<sup>(1)</sup>

| Mode | WGM13 | WGM12<br>(CTC1) | WGM11<br>(PWM11) | WGM10<br>(PWM10) | Timer/Counter Mode of<br>Operation | тор    | Update of<br>OCR1X at | TOV1 Flag<br>Set on |
|------|-------|-----------------|------------------|------------------|------------------------------------|--------|-----------------------|---------------------|
| 1    | 0     | 0               | 0                | 1                | PWM, Phase Correct, 8-bit          | 0x00FF | TOP                   | BOTTOM              |

| Table 16-5. Clock Select Bit Description |                                                                  |      |         |                             |                                       |        |                    |       |   |  |  |
|------------------------------------------|------------------------------------------------------------------|------|---------|-----------------------------|---------------------------------------|--------|--------------------|-------|---|--|--|
|                                          | CS12                                                             | CS11 | CS10    | Description                 | escription                            |        |                    |       |   |  |  |
|                                          | 0                                                                | 1    | 1       | clk <sub>VO</sub> /64 (From | lk <sub>VO</sub> /64 (From prescaler) |        |                    |       |   |  |  |
| ĺ                                        |                                                                  |      |         |                             |                                       |        |                    |       |   |  |  |
|                                          | $f_{OCnxPCPWM} = \frac{f_{\text{clk}\_UO}}{2 \cdot N \cdot TOP}$ |      | CIK_I/O | N=64                        |                                       | N      | <b>f</b> ocnxpcpwm | t(ms) | ) |  |  |
|                                          |                                                                  |      |         | 3                           | 64,00                                 | 490,20 |                    | 2,040 |   |  |  |

'

### Configuração normal do Timer 2 para a placa Arduino UNO.

A figura mostra o valor dos registradores lembrando que o registrador que define o ciclo de trabalho (duty cycle) é o registrador ODRCOA que comando o pino de saída 11 e OCROB que comanda o pino de saída 03!

Este temporizador opera no modo "PWM, Phase Correct" a uma frequência de 490Hz com período de 2,040ms!

| CR2A=16                        | 1=061010                    | 00001 👓           | 7<br>M2A1 C | 6<br>OM2A0 | 5<br>COM2B1                   | 4<br>COM2B | 0 | 3    | 2   | 1<br>WGM21      | 0<br>WGM20                           |
|--------------------------------|-----------------------------|-------------------|-------------|------------|-------------------------------|------------|---|------|-----|-----------------|--------------------------------------|
|                                |                             |                   | 1           | 0          | 1                             | 0          |   | 0    | 0   | 0               | 1                                    |
| Clear OC08 o<br>(non-inverting | in Compare Match,<br>(mode) | set OC08 at BOTTO | M. 1        |            | 0                             | 1          | 0 |      |     |                 |                                      |
|                                |                             |                   | 7<br>FOCO   | AF         | 6                             | 5          | 4 | 3    | 2   | 1<br>2 CS01     | 0                                    |
| TCCR                           | 2B=4=0b0                    | 0000100           | 0           | 0          |                               | 0          | 0 | 0    | 1   | 0               | 0                                    |
| Mode                           | WGM2                        | WGM1              | WGM         | M<br>0     | imer/Co<br>ode of<br>peratior | unter      |   | TOP  | Upd | ate of<br>Rx at | TOV Flag<br>Set on <sup>(1)(1)</sup> |
| 1                              | 0                           | 0                 | 1           | PC         | WM, Pha                       | ase        |   | 0xFF | т   | OP              | BOTTOM                               |

| Table 18-9. | Clock Select | Bit Description |
|-------------|--------------|-----------------|
|-------------|--------------|-----------------|

| CS22 | CS21 | CS20 | Description                             |
|------|------|------|-----------------------------------------|
| 1    | 0    | 0    | clk <sub>T2S</sub> /64 (From prescaler) |

| 1                                                 |      | TIMER | 2 PWM | phase corre |
|---------------------------------------------------|------|-------|-------|-------------|
| $f_{OCnxPCPWM} = \frac{J_{Clk} I/O}{N \cdot 510}$ | N=64 | CS    | N     | focnxPW     |
|                                                   | *    | 4     | 64    | 490.19      |

#### ect

| C | s | N  | <b>f</b> OCnxPWM | t(ms) |
|---|---|----|------------------|-------|
| Γ | 4 | 64 | 490,1960784      | 2,04  |

Como medir a frequência dos temporizadores na placa Arduino UNO.

O diagrama abaixo mostra como medir a frequência dos temporizadores.

O osciloscópio foi ligado para mostrar uma sáida de cada temporizador.

Neste trabalho foi usado o programa ISIS do PROTEUS com o simulador de Arduino SIMULINO.

Para ver o resultado no terminal da serial foi usado o terminal do Proteus.

O diagrama.

O osciloscópio esta ligado nos pinos 6 (TIMERO) cor amarelo, 9 (TIMER1) cor azul, 3(TIMER2), cor vermelho!



# Configuração do PWM da placa Arduino UNO

O programa é mostrado abaixo e foi gerado a partir do exemplo " Echo" da comunicação serial.

Para mostrar o valor somente uma vez foi inserido a linha abaixo. numero=Serial.readBytesUntil(13,sbuffer,255);

Para ativar o PWM você deve configurar o pino como saída e o PWM só é ativado a partir das instrução analogWrite()!

Note que ao ligar o circuito a serial não mostra nenhum valor pois a primeira instrução fica esperando um dado via serial, para que os valores possam ser visualizados digite qualquer coisa e o ENTER ou simplesmente ENTER no terminal da serial!

| ec | ho                                                                                                                              |
|----|---------------------------------------------------------------------------------------------------------------------------------|
| 1  | <pre>int numero;int k;int n;char sbuffer[255];</pre>                                                                            |
| 2  | void setup() {                                                                                                                  |
| 3  | // put your setup code here, to run once:                                                                                       |
| 4  | // initialize serial communication at 9600 bits per second:                                                                     |
| 5  | Serial.begin(9600);                                                                                                             |
| 6  | pinMode (3, OUTPUT); pinMode (11, OUTPUT); pinMode (9, OUTPUT); pinMode (10, OUTPUT); pinMode (6, OUTPUT); pinMode (5, OUTPUT); |
| 7  | }                                                                                                                               |
| 8  | void loop() {                                                                                                                   |
| 9  | // put your main code here, to run repeatedly:                                                                                  |
| 10 | analogWrite (3,127); analogWrite (11,127); analogWrite (9,127); analogWrite (10,127); analogWrite (6,127); analogWrite (5,127); |
| 11 | if( <mark>Serial.available())</mark> //se recebeu alguma coisa via serial                                                       |
| 12 | {                                                                                                                               |
| 13 | for $(k=0;k<255;k++) {sbuffer[k]=0;}//limpa o buffer$                                                                           |
| 14 | <pre>numero=Serial.readBytesUntil (13,sbuffer,255);//le o dado da entrada serial até receber o ENTER</pre>                      |
| 15 | <pre>Serial.println("TCCR0A=");Serial.println(TCCR0A); Serial.println("TCCR0B=");Serial.println(TCCR0B);</pre>                  |
| 16 | <pre>Serial.println("TCCR1A=");Serial.println(TCCR1A); Serial.println("TCCR1B=");Serial.println(TCCR1B);</pre>                  |
| 17 | <pre>Serial.println("TCCR2A=");Serial.println(TCCR2A);Serial.println("TCCR2B=");Serial.println(TCCR2B);</pre>                   |
| 18 | <pre>Serial.println();Serial.setTimeout(30000);delay(1);</pre>                                                                  |
| 19 | }                                                                                                                               |
| 20 | }                                                                                                                               |
| 21 |                                                                                                                                 |

Para copiar e colar.

int numero;int k;int n;char sbuffer[255]; void setup() { // put your setup code here, to run once: // initialize serial communication at 9600 bits per second: Serial.begin(9600);

pinMode(3,OUTPUT);pinMode(11,OUTPUT);pinMode(9,OUTPUT);pinMode(10,OUTPUT);pinMode(6,OUTPUT); );pinMode(5,OUTPUT); }

void loop() {

// put your main code here, to run repeatedly:

```
analogWrite(3,127);analogWrite(11,127);analogWrite(9,127);analogWrite(10,127);analogWrite(6,127);analogWrite(5,127);
```

if(Serial.available())//se recebeu alguma coisa via serial

```
{
```

} }

```
for (k=0;k<255;k++){sbuffer[k]=0;}//limpa o buffer
numero=Serial.readBytesUntil(13,sbuffer,255);//le o dado da entrada serial até receber o ENTER
Serial.println("TCCR0A=");Serial.println(TCCR0A); Serial.println("TCCR0B=");Serial.println(TCCR0B);
Serial.println("TCCR1A=");Serial.println(TCCR1A); Serial.println("TCCR1B=");Serial.println(TCCR1B);
Serial.println("TCCR2A=");Serial.println(TCCR2A);Serial.println("TCCR2B=");Serial.println(TCCR2B);
Serial.println("Serial.setTimeout(30000);delay(1);
```

# Configuração do PWM da placa Arduino UNO

O resultado é mostrado na figura abaixo com os tempos comentados e a caixa do terminal mostrando os valores dos temporizadores.

Os valores dos registradores dos temporizadores são mostrados no terminal, estes são os valores padrões da placa Arduino UNO e você pode conferir nas tabelas mostradas antes!



O osciloscópio mostra os tempos de um ciclo de cada um dos temporizadores



12

# Resumo dos temporizadores da placa Arduino UNO.

A tabela abaixo mostra um resumo quanto a frequência do PWM dos temporizadores usados na placa Arduino UNO, esta tabela será útil para alterar a frequência!



Pinos 11 e 03

### Conclusão.

Para trabalhar com a função analogWrite() do Arduino na placa UNO as saídas 5 e 6 trabalham na frequência mais alta de 980Hz e as saídas 3, 11, 9 e 10 operam a frequência mais baixa de 490Hz. O modo de operação das saídas 5 e 6 é "Fast PWM" e as outras saídas operam no modo "Phase Correct" por isto a frequência mais baixa.

Créditos.

Bibliografia.

Manual da Atmel para o microcontrolador ATmega328P.

PDF:

Sites: www.bairrospd.com

SEO: <u>www.bairrospd.com</u>, Arduino, PWM, alterando a frequência do PWM, senóide, LED, eletrônica, tutorial